Consistency of the Predicative Calculus of Cumulative Inductive Constructions (pCuIC)
نویسندگان
چکیده
In order to avoid well-know paradoxes associated with self-referential definitions, higher-order dependent type theories stratify the theory using a countably infinite hierarchy of universes (also known as sorts), Type0 : Type1 : · · · . Such type systems are called cumulative if for any type A we have that A : Typei implies A : Typei+1. The predicative calculus of inductive constructions (pCIC) which forms the basis of the Coq proof assistant, is one such system. In this paper we present and establish the soundness of the predicative calculus of cumulative inductive constructions (pCuIC) which extends the cumulativity relation to inductive types.
منابع مشابه
First Steps Towards Cumulative Inductive Types in CIC
We discuss our on-going research on making inductive types cumulative in the predicative calculus of inductive constructions (pCIC) – the logic of the Coq proof assistant. Having inductive types be cumulative alleviates some problems that occur while working with large inductive types, e.g., the category of small categories, in pCIC. We present the pCuIC system which adds cumulativity for induc...
متن کاملCumulative Inductive Types In Coq
In order to avoid well-know paradoxes associated with self-referential definitions, higher-order dependent type theories stratify the theory using a countably infinite hierarchy of universes (also known as sorts), Type0 : Type1 : · · · . Such type systems are called cumulative if for any type A we have that A : Typei implies A : Typei+1. The Predicative Calculus of Inductive Constructions (pCIC...
متن کاملThe Extended Calculus of Constructions (ECC) with Inductive Types
Luo’s Extended Calculus of donstructions (ECC) is a higher order functional calculus based on Coquand’s and Huet’s Calculus of Constructions, but has in addition strong sums and a predicative cumulative type hierarchy. In this paper I introduce inductive types on the predicative type levels of ECC. I also show how the o-Set model for ECC can be extended to a model for this augmented calculus. '...
متن کاملUniform Logical Relations
Strong Normalization (SN) is an important property for intensional constructive type theories such as the Calculus of Inductive Constructions (CiC), the basis for the Coq theorem prover. Not only does SN imply consistency, but it also ensures that type-checking is decidable, and further, it provides a straightforward model, the term model, for a theory. Unfortunately, although SN has been prove...
متن کاملCoq à la Tarski: a predicative calculus of constructions with explicit subtyping
The predicative Calculus of Inductive Constructions (pCIC), the theory behind the Coq proof system, contains an infinite hierarchy of predicative universes T ype 0 ∈ T ype 1 ∈ T ype 2 ∈. .. and an impredicative universe P rop for propositions, together with an implicit cumulativity relation P rop ⊆ T ype 0 ⊆ T ype 1 ⊆ T ype 2 ⊆. .. . Subtyping in Coq is implicit, and is handled by the kernel. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.03912 شماره
صفحات -
تاریخ انتشار 2017